centrifugal pump solved examples|centrifugal pump textbook pdf : company Dimensionless performance curves for a typical centrifugal pump from data given in Fig. 14.9 Fig. (14.10) Features & Benefits; Goulds Water Technology G&L Pump Series 3642 - Residential, Commercial Close-Coupled Centrifugal Features and Benefits: Vertical or Horizontal mounting capabilities, Close-coupled, space saving design, Standard carbon/ceramic faced mechanical seal with BUNA elastomers, 300 series stainless steel components.
{plog:ftitle_list}
Different types of centrifugal pumps are widely used in various industries worldwide. These pumps are classified based on the number of impellers, type of casing, orientation, and position. 1. Based on the number of impellers 1.1. Single stage impeller 1.2. . See more
Centrifugal pumps are widely used in various industries for fluid transportation and are known for their efficiency and reliability. In this article, we will explore a centrifugal pump example to understand how these pumps work and how to calculate important parameters.
The document contains 5 solved problems related to centrifugal pumps. The problems cover topics like calculating head, power required, efficiency,
Example:
A centrifugal pump has an outlet diameter equal to two times the inner diameter and is running at 1200 rpm. The pump works against a total head of 75 m. We need to calculate the velocity of flow through the impeller.
Solution:
To calculate the velocity of flow through the impeller, we can use the formula:
\[ V = \frac{Q}{A} \]
Where:
- \( V \) = Velocity of flow (m/s)
- \( Q \) = Flow rate (m\(^3\)/s)
- \( A \) = Area of the impeller (m\(^2\))
First, we need to calculate the flow rate using the formula:
\[ Q = \frac{\pi \times D^2 \times N}{4 \times 60} \]
Where:
- \( D \) = Diameter of the impeller (m)
- \( N \) = Pump speed (rpm)
Given that the outlet diameter is two times the inner diameter, we can calculate the diameter of the impeller:
Inner diameter, \( D_i = D \)
Outlet diameter, \( D_o = 2D \)
Area of the impeller, \( A = \frac{\pi}{4} \times (D_o^2 - D_i^2) \)
Substitute the values and calculate the flow rate:
\[ Q = \frac{\pi \times (2D)^2 \times 1200}{4 \times 60} \]
Next, we calculate the area of the impeller:
\[ A = \frac{\pi}{4} \times ((2D)^2 - D^2) \]
Now, we can calculate the velocity of flow using the formula mentioned earlier.
Dimensionless performance curves for a typical centrifugal pump from data given in Fig. 14.9 Fig. (14.10)
assembly instructions for self-priming multistage centrifugal pumps”). Disassembly work should be carried out with proper tools and using suitable disassembly sequence to prevent further .
centrifugal pump solved examples|centrifugal pump textbook pdf